Настройка кварцевых фильтров. Схема, описание

Кварцевый фильтр - это, как известно, “половина хорошего трансивера”. В предлагаемой статье приведены практическая конструкция двенадцати кристального кварцевого фильтра основной селекции для высококачественного трансивера и приставки к компьютеру, позволяющие настроить этот и любые другие узкополосные фильтры. В любительских конструкциях в последнее время в качестве фильтра основной селекции используют кварцевые восьми кристальные фильтры лестничного типа, выполненные на одинаковых резонаторах. Эти фильтры относительно просты в изготовлении и не требуют больших материальных затрат.

Для их расчета и моделирования написаны компьютерные программы. Характеристики фильтров вполне удовлетворяют требованиям качественного приема и передачи сигнала. Однако при всех преимуществах у этих фильтров имеется и существенный недостаток - некоторая асимметрия АЧХ (пологий низкочастотный скат) и, соответственно, невысокий коэффициент прямоугольности.

Загруженность радиолюбительского эфира определяет достаточно жесткие требования к избирательности современного трансивера по соседнему каналу, поэтому фильтр основной селекции должен обеспечивать затухание вне полосы пропускания не хуже 100 дБ при коэффициенте прямоугольности 1,5... 1,8 (по уровням -6/-90 дБ).

Естественно, что потери и неравномерность АЧХ в полосе пропускания фильтра должны быть минимальны. Руководствуясь рекомендациями, изложенными в , за основу был выбран десяти кристальный лестничный фильтр с чебышевской характеристикой при неравномерности АЧХ 0,28 дБ.

Чтобы увеличить крутизну скатов параллельно входу и выходу фильтра были введены дополнительные цепи, состоящие из последовательно включенных кварцевых резонаторов и конденсаторов.

Расчеты параметров резонаторов и фильтра проводились по методике, описанной в . Для полосы пропускания фильтра 2,65 кГц были получены исходные значения C1,2 = 82,2 пФ, Lкв = 0,0185 Гн, Rн = 224 Ом. Схема фильтра и расчетные значения номиналов конденсаторов показаны на рис. 1.

В конструкции использованы кварцевые резонаторы для телевизионных PAL-декодеров на частоту 8,867 МГц, выпускаемые ВНИИСИМС (г. Александров Владимирской области). Свою роль в выборе сыграли стабильная повторяемость параметров кристаллов, их малые габариты и невысокая стоимость.

Подбор частоты кварцевых резонаторов для ZQ2- ZQ11 проводился с точностью ±50 Гц. Измерения проводились с помощью самодельного автогенератора и промышленного частотомера. Резонаторы ZQ1 и ZQ12 для параллельных цепей подобраны из других партий кристаллов с частотами соответственно ниже и выше основной частоты фильтра примерно на 1 кГц.

Фильтр собран на печатной плате из двусторонне фольгированного стеклотекстолита толщиной 1 мм (рис. 2).

Верхний слой металлизации использован в качестве общего провода. Отверстия со стороны установки резонаторов раззенкованы. Корпусы всех кварцевых резонаторов соединены с общим проводом пайкой.

Перед установкой деталей печатная плата фильтра запаивается в коробочку из луженой жести с двумя съемными крышками. Также со стороны печатных проводников припаивается экран-перегородка, проходящая между выводами резонаторов по центральной осевой линии платы.


На рис. 3 приведена монтажная схема фильтра. Все конденсаторы в фильтре - КД и КМ.

После того как фильтр был изготовлен, возник вопрос: каким образом в домашних условиях измерить его АЧХ с максимальным разрешением?

Был задействован домашний компьютер с последующей проверкой результатов измерений построением АЧХ фильтра по точкам с применением селективного микровольтметра. Меня, как конструктора радиолюбительской аппаратуры, очень заинтересовала идея, предложенная DG2XK , использовать компьютерную программу низкочастотного (20 Гц...22 кГц) спектроанализатора для измерения АЧХ узкополосных радиолюбительских фильтров.

Ее суть заключается в том, что высокочастотный спектр АЧХ кварцевого фильтра с помощью обычного SSB детектора переносится в диапазон низких частот и компьютер с установленной программой анализатора спектра дает возможность посмотреть АЧХ этого фильтра на дисплее.

В качестве источника высокочастотного сигнала DG2XK использован генератор шума на стабилитроне. Проведенные мной эксперименты показали, что такой источник сигнала позволяет просматривать АЧХ до уровня не более - 40 дБ, что явно недостаточно для качественной настройки фильтра. Для того чтобы просмотреть АЧХ фильтра на уровне -100 дБ, генератор должен иметь

уровень боковых шумов ниже указанной величины, а детектор - хорошую линейность при максимальном динамическом диапазоне не хуже 90... 100 дБ.

По этой причине генератор шума был заменен традиционным генератором качающейся частоты (рис. 4). За основу взята схема кварцевого генератора , у которого относительная спектральная плотность мощности шумов равна -165 дБ/Гц. Это означает, что мощность шумов генератора при расстройке 10 кГц в полосе 3 кГц

меньше мощности основного колебания генератора на 135 дБ!

Схема первоисточника немного видоизменена. Так вместо биполярных транзисторов применены полевые, а последовательно с кварцевым резонатором ZQ1 включен контур, состоящий из катушки индуктивности L1 и варикапов VD2-VD5. Частота генератора перестраивается относительно частоты кварца в пределах 5 кГц, что вполне достаточно для измерения АЧХ узкополосного фильтра.

Кварцевый резонатор в генераторе аналогичный фильтровому. В режиме генератора качающейся частоты управляющее напряжение на варикапы VD2- VD5 подается с генератора пилообразного напряжения, выполненного на однопереходном транзисторе VT2 с генератором тока на VT1.

Для ручной перестройки частоты генератора применен многооборотный резистор R11. Микросхема DA1 работает как усилитель напряжения. От первоначально задуманного синусоидального управляющего напряжения пришлось отказаться ввиду неравномерной скорости прохода ГКЧ разных участков АЧХ фильтра, а для достижения максимальной разрешающей способности частота генератора снижена до 0,3 Гц. Переключателем SA1 выбирается частота генератора "пилы" - 10 или 0,3 Гц. Девиация частоты ГКЧ устанавливается подстроечным резистором R10.

Принципиальная схема блока детектора показана на рис. 5. Сигнал с выхода кварцевого фильтра подается на вход Х2, если контур L1C1C2 используется в качестве нагрузки фильтра.

Если измерения проводятся на фильтрах, нагруженных на активное сопротивление, этот контур не нужен. Тогда сигнал с резистора нагрузки подается на вход Х1, а на печатной плате детектора удаляется проводник, соединяющий входХ1 с контуром.

Истоковый повторитель с динамическим диапазоном более 90 дБ на мощном полевом транзисторе VT1 согласует сопротивление нагрузки фильтра и входного сопротивления смесителя. Детектор выполнен по схеме пассивного балансного смесителя на полевых транзисторах VT2, VT3 и имеет динамический диапазон более 93 дБ.

На объединенные затворы транзисторов через П-контуры C17L2C20 и C19L3C21 поступают противофазные синусоидальные напряжения уровнем 3...4В (эфф.) от опорного генератора. В опорном генераторе детектора, выполненном на микросхеме DD1, установлен кварцевый резонатор с частотой 8,862 МГц.

Образовавшийся на выходе смесителя низкочастотный сигнал усиливается примерно в 20 раз усилителем на микросхеме DA1. Так как звуковые карты персональных компьютеров имеют сравнительно низкоомный вход, в детекторе установлен мощный ОУ К157УД1. АЧХ усилителя скорректирована так, чтобы ниже частоты 1 кГц и выше частоты 20 кГц наблюдался спад усиления приблизительно -6 дБ на октаву.


Генератор качающейся частоты смонтирован на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 6). Верхний слой платы служит общим проводом, отверстия под выводы деталей, не имеющие с ним контакта, раззенкованы.

Плата запаяна в коробку высотой 40 мм с двумя съемными крышками. Коробка изготовлена из луженой жести. Катушки индуктивности L1, L2, L3 намотаны на стандартных каркасах диаметром 6,5 мм с подстроечниками из карбонильного железа и помещены в экраны. L1 содержит 40 витков провода ПЭВ-2 0,21, L3 и L2 - соответственно 27 и 2+4 витка провода ПЭЛШО-0,31.

Катушка L2 намотана поверх L3 ближе к “холодному” концу. Все дроссели стандартные - ДМ 0,1 68 мкГн. Постоянные резисторы МЛТ, подстроечные R6, R8 и R10 типа СПЗ-38. Многооборотный резистор - ППМЛ. Постоянные конденсаторы - КМ, КЛС, КТ, оксидные - К50-35, К53-1.

Налаживание ГКЧ начинают с установки максимального сигнала на выходе генератора пилообразного напряжения. Контролируя осциллографом сигнал на выводе 6 микросхемы DA1, подстроечными резисторами R8 (усиление) и R6 (смещение) устанавливают амплитуду и форму сигнала, приведенную на эпюре в точке А. Подбором резистора R12 добиваются устойчивой генерации без вхождения в режим ограничения сигнала.

Подбирая емкость конденсатора С14 и подстраивая контур L2L3, настраивают выходную колебательную систему в резонанс, что гарантирует хорошую нагрузочную способность генератора. Подстроечником катушки L1 устанавливают границы перестройки генератора в пределах 8,8586-8,8686 МГц, что с запасом перекрывает полосу АЧХ испытуемого кварцевого фильтра. Для обеспечения максимальной перестройки ГКЧ

(не менее 10 кГц) вокруг точки соединения L1, VD4, VD5 верхний слой фольги удален. Без нагрузки выходное синусоидальное напряжение генератора равно 1В (эфф).

Блок детектора выполнен на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 7).

Верхний слой фольги используется в качестве общего провода. Отверстия под выводы деталей, не имеющие контакт с общим проводом, зенкуют.

Плата запаивается в жестяную коробку высотой 35 мм со съемными крышками. От качества изготовления приставки зависит ее разрешающая способность.

Катушки L1 -L4 содержат по 32 витка провода ПЭВ-0,21, намотанных виток к витку на каркасах диаметром 6 мм. Подстроечники в катушках от броневых сердечников СБ-12а. Все дроссели типа ДМ-0,1. Индуктивность L5 - 16 мкГн, L6, L8 - 68 мкГн, L7- 40 мкГн. Трансформатор Т1 намотан на кольцевом ферритовом магнитопроводе 1000НН типоразмера К10 x 6 x 3 мм и содержит в первичной обмотке 7 витков, во вторичной - 2 x 13 витков провода ПЭВ-0,31.

Все подстроечные резисторы - СПЗ-38. Во время предварительной настройки блока высокочастотным осциллографом контролируют синусоидальный сигнал на затворах транзисторов VT2, VT3 и, при необходимости, подстраивают катушки L2, L3. Подстроечником катушки L4 частота опорного генератора уводится ниже полосы пропускания фильтра на 5 кГц. Это делается для того, чтобы на рабочем участке анализатора спектра меньше наблюдалось различных помех, уменьшающих разрешающую способность устройства.


Генератор качающейся частоты подключают к кварцевому фильтру через согласующий колебательный контур с емкостным делителем (рис. 8).

В процессе настройки это позволит получить малые затухание и неравномерность в полосе пропускания фильтра.

Второй согласующий колебательный контур, как уже упоминалось, находится в детекторной приставке. Собрав схему измерения и подключив выход приставки (разъем ХЗ) на микрофонный или линейный вход звуковой карты персонального компьютера, запускаем программу спектроанализатора. Существует несколько таких программ. Автором была использована программа SpectraLab v.4.32.16, размещенная по адресу: http://cityradio.narod.ru/utilities.html. Программа удобна в пользовании и обладает большими возможностями.

Итак, запускаем программу “SpektroLab” и, подстраивая частоты ГКЧ (в режиме ручного управления) и опорного генератора в детекторной приставке, выставляем пик спектрограммы ГКЧ на отметку 5 кГц. Далее, балансируя смеситель детекторной приставки, пик второй гармоники уменьшают до уровня шумов. После этого включается режим ГКЧ и на мониторе появляется долгожданная АЧХ испытуемого фильтра. Вначале включается частота качания 10 Гц и, подстраивая с помощью R11 центральную частоту, а затем и полосу качания R10 (рис. 4), устанавливаем приемлемую “картинку” АЧХ фильтра в реальном времени. Во время измерений, подстраивая согласующие контуры, добиваются минимальной неравномерности в полосе пропускания.

Далее для достижения максимальной разрешающей способности устройства включаем частоту качания 0,3 Гц и устанавливаем в программе максимально возможное количество точек преобразования Фурье (FFT, у автора 4096...8192) и минимальное значение параметра усреднения (Averaging, у автора 1).

Так как характеристика рисуется за несколько проходов ГКЧ, то включается режим запоминающего пикового вольтметра (Hold). В итоге на мониторе получаем АЧХ исследуемого фильтра.

С помощью курсора мыши получаем необходимые цифровые значения полученной АЧХ на нужных уровнях. При этом надо не забыть измерить частоту опорного генератора в детекторной приставке, чтобы потом получить истинные значения частот точек АЧХ.

Оценив первоначальную “картинку”, подстраивают частоты последовательного резонанса ZQ1n ZQ12 соответственно на нижний и верхний скаты АЧХ фильтра, добиваясь максимальной прямоугольности на уровне - 90 дБ.

В заключение с помощью принтера получаем полновесный “документ” на изготовленный фильтр. В качестве примера на рис. 9 приведена спектрограмма АЧХ этого фильтра. Там же приведена спектрограмма сигнала ГКЧ. Видимая неравномерность левого ската АЧХ на уровне -3...-5 дБ устраняется перестановкой кварцевых резонаторов ZQ2-ZQ11.


В итоге получаем следующие характеристики фильтра: полоса пропускания по уровню - 6 дБ - 2,586 кГц, неравномерность АЧХ в полосе пропускания - менее 2 дБ, коэффициент прямоугольности по уровням - 6/-60 дБ - 1,41; по уровням - 6/-80 дБ 1,59 и по уровням - 6/-90 дБ - 1,67; затухание в полосе - менее 3 дБ, а за полосой - более 90 дБ.

Автор решил проверить полученные результаты и измерил АЧХ кварцевого фильтра по точкам. Для измерений потребовался селективный микровольтметр с хорошим аттенюатором, коим послужил микровольтметр типа HMV-4 (Польша) с номинальной чувствительностью 0,5 мкВ (в то же время хорошо фиксирующий сигналы с уровнем 0,05 мкВ) и аттенюатором в 100 дБ.

Для этого варианта измерений была собрана схема, приведенная на рис. 10. Согласующие контуры по входу и выходу фильтра тщательно экранированы. Соединительные экранированные провода применены хорошего качества. Также тщательно выполнены “земляные” цепи.

Плавно изменяя частоту ГКЧ резистором R11 и переключая по 10 дБ аттенюатор, снимаем показания микровольтметра, проходя по всей АЧХ фильтра. Используя данные измерений и тот же масштаб, строим график АЧХ (рис. 11).

Благодаря высокой чувствительности микровольтметра и малым боковым шумам ГКЧ хорошо фиксируются сигналы на уровне -120 дБ, что четко отражено на графике.

Результаты измерений получились следующие: полоса пропускания по уровню - 6 дБ - 2,64 кГц; неравномерность АЧХ - менее 2 дБ; коэффициент прямоугольности по уровням -6/-60 дБ равен 1,386; по уровням - 6/-80 дБ - 1,56; по уровням - 6/-90 дБ - 1,682; по уровням - 6/-100 дБ - 1,864; затухание в полосе - менее 3 дБ, за полосой - более 100 дБ.

Некоторые отличия результатов измерений от компьютерного варианта объясняются наличием накапливающихся ошибок цифроаналогового преобразования при изменении анализируемого сигнала в большом динамическом диапазоне.

Необходимо отметить, что приведенные графики АЧХ кварцевого фильтра получены при минимальном объеме настроечных работ и при более тщательном подборе компонентов, характеристики фильтра могут быть заметно улучшены.

Предложенная схема генератора может быть с успехом использована для работы АРУ и детекторов. Подав сигнал генератора качающейся частоты на детектор, на выходе приставки к ПК получаем сигнал низкочастотного генератора качающейся частоты, с помощью которого можно легко и быстро настроить любой фильтр и каскад НЧ тракта трансивера.

Не менее интересно использовать предлагаемую детекторную приставку в составе панорамного индикатора трансивера. Для этого следует подключить к выходу первого смесителя кварцевый фильтр с полосой пропускания 8...10 кГц. Далее полученный сигнал усилить и подать на вход детектора. В этом случае можно наблюдать сигналы своих корреспондентов с уровнями от 5 до 9 баллов с хорошей разрешающей способностью.

Г. Брагин (RZ4HK)

Литература:

1. Усов В. Кварцевый фильтр SSB. - Радиолюбитель, 1992, № 6, с. 39, 40.

2. Дроздов В. В. Любительские KB трансиверы. - М.: Радио и связь, 1988.

3. Klaus Raban (DG2XK) Optimizierung von Eigenbau-Quarzfiltern mit der PC-Soundkarte. - Funkamateur, № 11, 2001, S. 1246-1249.

4. Frank Silva. Shmutzeffekte vermeiden und beseitig. - FUNK, 1999, 11, S. 38.

Часто в статьях встречаешь фразу: "Кварцевый фильтр легче настроить при помощи характериографов (например, X1-38, X-1-48, СК-4-59 и др.). Конечно, если они есть, то настройка фильтра проста. Но это если у вас есть соответствующий прибор, да еще и инструкция к нему. В противном случае слово "просто" быстренько превратится в противоположное ему "трудно". Поэтому в данной статье делается упор на настройку кварцевого фильтра с использованием простейших приборов.

В некоторых статьях опускают информацию о типе настраиваемого фильтра (лестничный, мостовой, монолитный), описывая общие правила настройки. Однако я пришел к выводу, что каждый из них имеет, наряду с общими, еще и свои собственные особенности.

Начнем с настройки фильтра лестничного типа (рис.1).


Рис.1

Опыт показывает, что:

Фильтр получается с лучшими параметрами, если все кварцы имеют как можно более близкие частоты последовательного резонанса (±10 Гц). Однако не стоит расстраиваться, если это условие не выполнимо, ибо неплохой фильтр получается и при разносе частот до 1 кГц ;

Подбирать кварцы лучше всего включая их в опорном генераторе того устройства, в котором предполагается эксплуатировать этот фильтр, а самый низкочастотный из них использовать непосредственно в опорном генераторе. При этом подстроечные элементы генератора не следует трогать;

Настраивать фильтр следует непосредственно в составе "родного" аппарата;

Если кварцы имеют неодинаковые частоты, их следует располагать в следующей последовательности: наиболее высокочастотный установить первым на входе, а все последующие - поочередно слева направо, по рангу, с понижением частоты;

Емкости следует применять малогабаритные, с минимальным температурным коэффициентом емкости (ТКЕ) с точностью не хуже ±1,5%. Но не отчаивайтесь, если таковые не найдутся, ибо в процессе настройки их все равно придется подбирать. В большинстве случаев в процессе настройки бывает заменено до 90% емкостей на другие (хотя и близкие) номиналы;

Кварцы лучше использовать фильтровые (взятые, например, из разобранных заводских фильтров).

Так, из четырех фильтров на частоту 10,7 МГц (типа ФП2П-325-10700М-15) можно собрать четыре лестничных восьмикристальных фильтра (в этих фильтрах имеется по четыре пары кварцев с одинаковыми частотами) с разными, но близкими к 10,7 МГц частотами. Обычно так и поступают несколько радиолюбителей (как правило, 4 человека), имеющих по одному фильтру. Самый опытный из них подбирает одинаковые по частоте четыре комплекта кварцев, затем кварцы с минимальным. разбросом оставляет себе, а остальные отдает обратно друзьям (или наоборот?!). С несколько меньшим успехом можно использовать и генераторные кварцы.

В домашних условиях кварцевый фильтр можно настроить тремя способами.

В первом случае следует использовать (кроме настраиваемого аппарата) в качестве вспомогательного прибора другой трансивер с цифровой шкалой, во втором случае - ГСС (генератор стандартных сигналов) и частотомер (с предельной частотой, превышающей хотя бы низшую частоту вашего настраиваемого устройства, например 1,9 МГц). Частотомером измеряют либо частоту ГСС, либо частоту ГПД исследуемого аппарата.

В третьем случае используется кварцевый гетеродин на одну из рабочих частот (либо ГСС, либо другой трансивер без цифровой шкалы), и обязательно наличие цифровой шкалы в настраиваемом аппарате.

Во всех трех случаях на вход настраиваемого аппарата подают ВЧ-сигнал рабочего диапазона. В первых двух случаях медленно изменяют подаваемую частоту в полосе прозрачности кварцевого фильтра, снимая при этом показания S-метра в относительных единицах, и через каждые 200 Гц записывают их в таблицу. Затем, согласно таблице, строят графики (АЧХ). По вертикали откладывают показания S-метра, а по горизонтали - частоту. Соединив проставленные на графике точки интерполяционной (усредняющей) линией, получают АЧХ - амплитудно-частотную характеристику новоиспеченного фильтра.

В третьем случае все проделывают аналогично, только перестраивают по частоте сам настраиваемый аппарат, снимая показания непосредственно с его цифровой шкалы и S-метра одновременно.

При этом "новоиспеченный" фильтр, как правило, имеет:

Иную полосу, чем требуется;

Неравномерность в верхней части АЧХ;

Пологий (а иногда с выбросами) нижний скат АЧХ.

В дальнейшем настройка фильтра ведется по трем вышеуказанным направлениям в порядке очередности.

На первом этапе настройки (грубая настройка) следует получить полосу пропускания фильтра до 2,4 кГц путем поочередной замены емкостей, начиная от входа фильтра, и снятия при этом АЧХ. При этом следует иметь в виду следующее:

Если параллельно кварцам (особенно крайним) установить дополнительные емкости и увеличивать их номинал (до определенного предела), то ширина полосы пропускания фильтра будет уменьшаться. Аналогичный эффект будет наблюдаться и при увеличении емкостей конденсаторов, идущих на корпус. При уменьшении величин этих емкостей будет наблюдаться обратный эффект. Данное свойство используют для сужения полосы пропускания кварцевого фильтра в телеграфном режиме. Таким образом полосу пропускания можно уменьшить до 0,8 кГц. При дальнейшем сужении полосы резко увеличивается затухание фильтра в полосе прозрачности (для получения малого затухания в CW-фильтре следует использовать резонаторы с добротностью, по крайней мере на порядок превышающей добротность фильтра);

Величина "горбов" и провалов в верхней части АЧХ (линейность характеристики) будет зависеть не только от величины подбираемых емкостей, но и от величины сопротивления нагрузочных резисторов, установленных на входе и выходе фильтра. При уменьшении их сопроитвления линейность характеристики улучшается, но увеличивается затухание в полосе пропускания фильтра;

При невозможности получения достаточной крутизны нижнего ската, следует параллельно нагрузочным резисторам установить кварцы, аналогичные используемым в фильтре, при этом из всех имеющихся кварцев следует выбрать наиболее низкочастотный или понизить его частоту путем последовательного включения индуктивности. Подбором количества витков этой индуктивности можно менять крутизну нижнего ската;

Настройку фильтра нужно повторить несколько раз. Если на последнем этапе настройки не удается получить приемлемей АЧХ, необходимо попробовать подогнать частоту последовательного резонанса отдельных кварцев. Для этого последовательно кварцу устанавливают конденсатор, и подборкой этого конденсатора добиваются генерации на частоте остальных кварцев. Если это не поможет (а это может быть при малом разносе между частотами параллельного и последовательного резонансов кварца), следует заменить кварцы. Кварцы в фильтре следует располагать в цепочку, тщательно экранируя вход от выхода. На рис.2 показаны АЧХ КФ приемника "TURBO-TEST", снятые при различных значениях емкостей конденсаторов. -


Рис.2- Для большей наглядности значения частоты сняты без соблюдения принимаемой боковой полосы и действительного значения ПЧ. На рис.3 показаны АЧХ окончательного варианта настройки фильтра. -


Рис.3

Теперь несколько практических советов по настройке мостового кварцевого фильтра. Такой фильтр показан на рис.4. Катушки L1 и L2 содержат 2х10 витков провода диаметром 0,31 мм, в качестве сердечников использованы ферритовые кольца от фильтра ФП2А-325-10,700 М-15. Ширина полосы пропускания фильтра - 2,6 кГц.


Рис.4

Если у вас изготовлен фильтр на низкие частоты (2...6 МГц), он обычно получается более узкополосным, чем требуется, а если фильтр на высокие частоты (8...10 МГц) - слишком широкополосным. В первом случае следует расширить полосу пропускания путем подключения к верхним, либо к нижним (рис.4) кварцам катушек индуктивности, которые следует подобрать экспериментально. Во втором случае, чтобы уменьшить полосу пропускания, необходимо параллельно резонаторам подсоединить подстроечные конденсаторы (аналогично катушкам). Кварцы в фильтре нужно подобрать с точностью до 50 Гц (частота последовательного резонанса), причем частоты всех верхних резонаторов должны быть одинаковыми и отличаться от нижних (также одинаковых) на 2...3 кГц.

Если в наличии имеются только кварцы на одинаковые частоты, можно изменить частоту кварцев путем стирания посеребренного слоя с кристалла (повысить частоту) или путем заштриховки карандашом (понизить). Но практика показывает, что стабильность параметров такого фильтра с течением времени оставляет желать лучшего.

Более устойчивые результаты дает подгонка частоты путем последовательного включения с кварцем подстроечного конденсатора. После настройки конденсатор желательно заменить на постоянную емкость такой же величины.

При большой ширине полосы пропускания фильтра, в середине его АЧХ может появиться провал (затухание). Следует сказать, что его глубина в значительной мере зависит от сопротивления резисторов R1 и R2. Их величина может быть от сотен Ом (при полосе 3 кГц) на частотах 8...10 МГц до нескольких килоом на более низких частотах и при меньшей полосе пропускания фильтра. При изготовлении мостового фильтра следует большое внимание уделить симметричности его плеч, а также обмоток входящих в него трансформаторов, ну и, конечно, тщательной экранировке входа от выхода. Более подробно о мостовых фильтрах можно прочитать в.

Литература

1. Гончаренко И. Лестничные фильтры на неодинаковых резонаторах. - Радио, 1992, №1, С. 18.
2. Бунин С.Г, ЯйленкоЛ.П. Справочник радиолюбителя-коротковолновика. - К.: Техника, 1984, С.21...25.

Рис.1 Кварцевые фильтры с "параллельными" емкостями

Стрелками ААи ББ показан второй вариант включения КПЕ. Резисторы R1, R4 (0 ... 300 Ом) устанавливаются при наличии больших выбросов на АЧХ. Конденсатор С4* подбирается в пределах от 0 до 30 пФ.

С целью минимизации числа конденсаторов, были выбраны схемы фильтров, содержащие только параллельные емкости, рис.1. Поскольку фильтры симметричны (относительно их входа-выхода), оказалось возможным использовать сдвоенные КПЕ от радиовещательных приемников емкостью 12 - 495 пФ. Кроме этого, понадобится еще один, заранее проградуированный в пФ, односекционный переменный конденсатор.

Настройка фильтра сводится к следующему.

Для настройки может понадобиться прибор для измерения амплитудно-частотных харакеристик Х1-38 или ему подобный. Я же использую осциллограф и самодельную приставку (см. ниже).

Первоначально все конденсаторы устанавливаются в положение, соответствующее емкости 30 ... 50 пФ. Контролируя АЧХ фильтра на экране прибора, вращением конденсаторов в небольших пределах, добиваемся требуемой полосы пропускания. Затем, подстройкой переменных резисторов (использовать только безиндукционные, например, СП4-1) на входе и выходе фильтра, стараемся выровнять вершину АЧХ. Приведенные выше операции, повторяются несколько раз до получения желаемой АЧХ.

Далее, вместо каждой отдельной секции КПЕ, припаиваем заранее проградуированный конденсатор, с помощью которого стараемся оптимизировать АЧХ фильтра. По его шкале определяем емкость постоянного конденсатора и производим замену. Таким образом, все секции КПЕ, поочередно, заменяются конденсаторами постоянной емкости. Точно также поступаем с переменными резисторами, которые впоследствии заменим на постоянные.

Окончательная "доводка" фильтра производится непосредственно по месту, например, в трансивере. После установки фильтра в трансивер возможно потребуется коррекция номиналов этих резисторов, при этом, для оптимального согласования фильтра с выходом смесителя и входом УПЧ, ГКЧ и осциллограф необходимо подключать согласно схемы, приведенной на рис.2.

Рис.2 Подключение кварцевого фильтра для окончательной настройки

По описанной методике было изготовлено несколько фильтров. Хочется отметить следующее. Настройка трех или четырех кристальных фильтров при некотором навыке занимает не более часа, однако с 8-ми кристальными фильтрами затраты времени гораздо выше. При этом, попытки предварительной настройки сначала двух отдельных 4-х кристальных фильтров, а затем их состыковка - оказались бесплодны. Малейший разброс их параметров (а это всегда имеет место) приводит к искажению результирующей АЧХ. Интересно также отметить, что теоретически равные емкости (например, С1=СЗ, на рис. 1а; С1=С7; СЗ=С5, на рис.1б) после настройки градуированным КПЕ по оптимальной АЧХ имели заметный разброс.

На мой взгляд, достоинством этой методики, является ее наглядность. На экране прибора хорошо видно каким образом меняется АЧХ фильтра в зависимости от изменения емкости каждого конденсатора. Например, выяснилось, что в отдельных случаях вполне достаточно поменять емкость одного конденсатора (с помощью реле) с тем, чтобы изменить полосу пропускания фильтра без особого ухудшения ее прямоугольности.

Как уже отмечалось выше, для настройки фильтра используется осциллограф С1-77 и переделанная приставка для измерения АЧХ .

Почему именно С1-77? Дело в том, что на его боковой стенке имеется разъем, на котором присутствует пилообразное напряжение генератора развертки. Это позволяет упростить саму приставку и исключить из ее схемы генератор пилообразного напряжения (ГПН). Поэтому, отпадает необходимость в дополнительной синхронизации и становится возможным наблюдение стабильной АЧХ при различных длительностях развертки. Очевидно, что можно приспособить и осциллографы других типов, может быть после небольшой доработки.

Поскольку, упрощенная приставка используется только при работе с кварцевыми фильтрами вблизи частоты 8 МГц, то все остальные поддиапазоны из нее были исключены.

Также, в используемой приставке, потребуется немного увеличить выходное напряжение. Для этого достаточно переделать выходной каскад в резонансный. Он должен настраиваться в резонанс каждый раз после того, как к его выходу будет подключаться новый фильтр.

Рис.3 Приставка к осциллографу для настройки кварцевых фильтров

Литература.

  1. В.Жалнераускас. Серия статей «Кварцевые фильтры» Журнал «Радио» № 1, 2, 6 1982 г., № 5, 7 1983 г.
  2. С.Бунин, Л.Яйленко «Справочник коротковолновика» изд. «Техника» 1984 г.
  3. В.Дроздов «Коротковолновые трансиверы» изд. «Радио и связь» 1988 г.
  4. Журнал «Радио» №5 1993 г. «Генератор качающейся частоты»

Простой и дешевый фильтр для SSB

Воронцов А. RW6HRM предлагает в качестве альтернативы ЭМФ-ам применять простую и главное-дешевую схему кварцевого фильтра. Статья актуальна ввиду дифицита и дороговизны данных элементов.

В последнее время очень часто в Интернет-публикациях встречаются «слезы» начинающих радиолюбителей, мол, трудно достать ЭМФ, это дорого, кварцевый фильтр сделать сложно, необходимы приборы и т.п. Действительно, достать сейчас хороший новый ЭМФ достаточно проблематично, что предлагается на рынке – это глубокое б/у без гарантии нормальной работы, а сваять кварцевый фильтр даже на имеющихся в продаже кварцах на 8,86 МГц не обладая соответствующей контрольно-измерительной аппаратурой, «на глазок», невозможно. На первый взгляд ситуация не ахти…

Однако есть вариант сделать простой кварцевый фильтр для низкочастотного SSB-передатчика или трансивера достаточно простым и самое главное – недорогим. Достаточно пройтись по радиомагазинам и узреть в продаже «двухножковые» кварцы для пультов ДУ на частоты от 450 до 960 кГц. Данные детали делают с достаточно большими допусками на генерируемые частоты, что дает нам право выбора как используемой промежуточной частоты, так и полосы пропускания делаемого фильтра. Сразу оговорюсь: идея не моя, ранее её апробировал шведский радиолюбитель HARRY LYTHALL, SM0VPO, а я просто сообщаю об этом Вам (предварительно сделав несколько фильтров для себя).

Итак, что нам требуется для подбора кварцев – простой генератор типа «трехточка» и частотомер или радиоприемник с частотомером, перекрывающий любительский диапазон 160 метров. Из кучи кварцев нам требуется выбрать два с разносом генерируемых частот в 1 – 1,5 кГц. Если мы используем кварцы на частоту 455 кГц, то удобнее всего настраиваться на их четвертую гармонику (около 1820 кГц, добиваясь разноса в 4 – 4,5 кГц), а если 960 кГц, то на вторую (1920 кГц, разнос 2 – 2,5 кГц).

Контур CL1 в данном примере является нагрузкой предыдущего каскада УПЧ, это стандартный контур на 455 кГц из любого зарубежного раскуроченного АМ-приемника. Можно также использовать данные из радиолюбительской литературы для самодельных контуров на частоту 465 кГц, уменьшив количество витков на 5%. Точками обозначено начало катушек связи L2 и L3, им достаточно по 10 – 20 витков. Вполне возможно поставить фильтр сразу после смесителя, к примеру, кольцевого на четырех диодах. В этом случае уже получится трансформатор 1:1:1, который можно выполнить на кольце Ф600 с внешним диаметром 10 – 12 мм, количество витков скрученного тройного провода ПЭЛ-0,1 – 10 – 30. Конденсатор С в случае трансформатора, естественно, не нужен. Если второй каскад УПЧ выполнен на транзисторе, то резистор 10 кОм возможно использовать в токозадающей базовой цепи, тогда разделительный конденсатор 0,1 мкФ не нужен. А если этот фильтр использовать в схеме простого радиотракта , то и резистор можно исключить.

Теперь из оставшейся кучи кварцев нам надо подобрать подходящий для опорного генератора. Если к указанным на схеме номиналам мы подберем кварц на 455 кГц, то на выходе фильтра получим нижнюю боковую полосу, если на 454 кГц – верхнюю. Если кварцев больше не осталось, то вполне возможно собрать опорный генератор по схеме емкостной трехточки и, подбирая его частоту, настроить получившийся фильтр. При этом генератор должен быть выполнен с повышенными мерами в части его термостабильности.

Настройку можно производить даже на слух, по несущим радиостанций, но это удовольствие оставим для более-менее опытных «музыкантов». Для настройки хорошо бы иметь звуковой генератор и осциллограф. Подаем сигнал со звукового генератора частотой 3 – 3,3 кГц на микрофонный усилитель (предположим, что фильтр уже стоит в схеме передатчика), подключаем осциллограф на выход фильтра и сдвигаем частоту опорного генератора до тех пор, пока выходной уровень сигнала после фильтра не уменьшится минимально. Далее проверяем нижнюю границу пропускания фильтра, подавая на микрофонный вход частоту 300 Гц со звукового генератора. Кстати, для повышения нижней границы пропускаемой полосы микрофонного усилителя по звуковым частотам, достаточно установить переходные конденсаторы емкостью около 6800 пФ и менее, а для верхней границы в любом случае хорошо бы установить хотя бы однозвенный ФНЧ.

Вот и все. Как видите, вы не понесете больших затрат при изготовлении данного фильтра, а сигнал получится достаточно презентабельный. Конечно, из-за простоты применить его в передатчиках второй категории уже нежелательно, но для 1,8 – 7 МГц его будет более чем достаточно. По результатам измерений эта классическая конструкция полностью совпадает с описанным в справочниках (к примеру, Справочник коротковолновика Бунина и Яйленко) - нижняя часть характеристики несколько затянута. Затухание в полосе пропускания - около 1 - 2 дБ, оно зависит от качества примененных резонаторов. Но если вы найдете еще более дешевый способ выйти в эфир с SSB (кроме фазового) - сообщите

Улучшение АЧХ "Ленинградского" кварцевого фильтра

С. Попов RA6CS



Во время постройки приемника для любительской связи с двойным преобразованием потребовалось подобрать и посмотреть реальную АЧХ фильтра ПЧ, убедиться, что она в пределах 2.5-2.8кГц, необходимых для комфортного приема SSB станций. Поскольку у меня нет практически никакого измерительного оборудования, пришлось использовать старого друга , сделанного на основе RTL SDR.

В общем, это оказалось делом двух минут. SDR приемник выполняет роль анализатора спектра. По-хорошему надо было собрать генератор шума, но в промзоне нет лучшего генератора шума, чем сам эфир. Так и сделал, на вход фильтра подключил антенну (активная полноразмерная рамка 40 метрового диапазона), выход подключил к конвертеру. Из-за достаточно высокого КУ антенного усилителя эфир выполнил роль источника шума, и SDR приемник показал реальную АЧХ фильтра. не смотря на то, что по картинке подавление за полосой пропускания всего 40db, реальное подавление значительно выше из-за того, что уровня шума эфира все же недостаточно для оценки динамических характеристик, но форму и ширину АЧХ оценить вполне можно.

К слову, о фильтре...

Простой кварцевый фильтр промежуточной частоты

Это т.н. лестничный фильтр, в котором использованы ширпотребовские кварцевые резонаторы. В моем случае это резонаторы на 10МГц. Из-за низкой цены наших магазинах их продают по 5 штук, этого комплекта как раз хватит на приемник: 4 штуки пойдут на фильтр ПЧ, и еще один будет использован во втором гетеродине.

В моем случае CS1 = 33пф, Cp1,Cp2 = 62пф. Все кварцы — 10МГц. Итоговая полоса — 2.5-2.8кГц в зависимости от того, по какому уровню оценивать.

Подбор емкостей был выполнен при подключенном трехсекционном конденсаторе, 3х12-495пФ. Вращением добиваемся необходимой ширины АЧХ, при этом изменение полосы в реальном времени видно на экране компьютера, у меня она менялась от 5-6кГц до 200Гц, при этом более или менее ровная АЧХ была в пределах 1-3кГц, можно было выбрать любую полосу. Также можно легко реализовать переключение полосы, например, 1.8, 2.5, 3.3кГц. Кварцы можно использовать практически любые, исходя из необходимой величины ПЧ, которая может зависеть от возможностей гетеродина, емкости при этом придется подбирать экспериментальным путем.

Похожие публикации