Антенный анализатор. Простой, дешевый антенный анализатор Предназначение модели SARK

– весьма полезный прибор Многие радиолюбители хотели бы иметь «фирменный» антенный анализатор вроде MJF259, или аналогичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя имеется покупной или самодельный генератор ВЧ и частотомер. Используя эти два прибора и дифференциальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использовалась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую антенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных обмотках трансформатора поступает на измеритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обеспечить наибольшую чувствительность измерителя при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом можно будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны .

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установилась больше 100 пФ, то это говорит о емкостном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индуктивном характере реактивного сопротивления в антенне .

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распределенных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соответственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны . – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности» Похожие материалы:

При настройке антенно-фидерных систем важно правильно измерить коэффициент стоячей волны (КСВ). Этот параметр в любительских условиях обычно измеряется с помощью КСВ-метра на фиксированной частоте, а частотная характеристика антенны строится рядом последовательных замеров. Для однодиапазонной антенны этот классический метод вполне применим.

Но чтобы настроить таким образом много диапазонную КВ антенну, в которой изменение размеров одного конструктивного элемента влияет в разной степени на ее параметры на нескольких диапазонах, потребуется масса усилий и времени.

Тут необходим дорогой или (полу)профессиональный антенный анализатор, который выведет на дисплей или экран график значения КСВ, а также активного и реактивного сопротивления антенны в зависимости от частоты. Удобно и наглядно.

Или даже такой, профисиональный, цена которого достигает 40.000$.

И вот встает вопрос – покупать достаточно дорогой или фирменный антенный анализатор или делать его своими руками. Учитывая, что этот прибор нужен не чаще раза, два в год. А все остальное время он будет хранится на «верхней полке». Если конечно не заниматься установкой и настройкой професионально. Смеюсь Или сделать самому (заказать) самодельный, не дорогостоящий, и доступных компонентов.

Антенный анализатор должен быть по возможности простым, его настройка и калибровка должна быть доступна в домашних условиях без использования каких-либо образцовых приборов. Он должен обеспечивать панорамное измерение КСВ, с выводом графиков на экран компьютера и (или) собственного дисплея в частотном диапазоне 1-30 МГц.

Все анализаторы, будь то самодельные или профи, используют практически одинаковый алгоритм, формулу для вычисления значений — измерительный мост. Разница заключается только в предложенном сервисе, комфортной работе, программном обеспечении, которое они используют.


В качестве контроллера можно использовать готовую плату Arduino Nano, плюс добавить стандартный модуль синтезатора частоты на AD9850.


Придется только соединить эти два модуля и дополнить платой с несколькими деталями измерительного моста по предложенной схеме.

В качестве «наглядного пособия», по которому можно периодически любоваться своими антеннами, используется компьютер, ноутбук с установленной простой, маленькой программкой. Управление прибором (железом) осуществляется стандартный кабелем через USB-порт.

Антенный анали­затор – весьма по­лезный прибор Мно­гие радиолюбители хотели бы иметь «фирменный» антен­ный анализатор вро­де MJF259, или ана­логичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя име­ется покупной или самодельный гене­ратор ВЧ и частото­мер. Используя эти два прибора и дифферен­циальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использова­лась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точ­ного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую ан­тенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных об­мотках трансформатора поступает на изме­ритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обес­печить наибольшую чувствительность измери­теля при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом мож­но будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны.

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установи­лась больше 100 пФ, то это говорит о емкост­ном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индук­тивном характере реактивного сопротивления в антенне.

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распреде­ленных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соот­ветственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны. – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности».

Антенный анали­затор – весьма по­лезный прибор Мно­гие радиолюбители хотели бы иметь «фирменный» антен­ный анализатор вро­де MJF259, или ана­логичный. Но такие приборы слишком дороги… Однако, уверен, у каждого радиолюбителя име­ется покупной или самодельный гене­ратор ВЧ и частото­мер. Используя эти два прибора и дифферен­циальный мост можно получить систему, способную во многих случаях работать как антенный анализатор.

Схема, показанная на рисунке, использова­лась при настройке антенн КВ-диапазона, от 1.6 до 30 МГц. Нужен генератор ВЧ работающий в таком диапазоне А частотомер нужен для точ­ного определения этой частоты. Впрочем, частотомер не обязателен, если ГВЧ имеет достаточно четкую и внятную шкалу. Сигнал от генератора подается на разъем Х1. Резистором R1 регулируется уровень (можно R1 и не ставить, а пользоваться регулятором уровня, имеющемся у генератора).

К разъему Х2 подключают анализируемую ан­тенну. ВЧ напряжение поступает на первичную обмотку. ВЧ напряжение на вторичных об­мотках трансформатора поступает на изме­ритель, состоящий из микроамперметра Р1 и детектора на германиевых диодах VD1 и VD2 Диоды должны быть германиевыми, чтобы обес­печить наибольшую чувствительность измери­теля при индикации минимальных показаний (баланс).

Баланса моста достигают регулировкой резистора R3 и переменного конденсатора С5. Эти детали необходимо снабдить шкалами с указанием сопротивлений и емкостей соот­ветствующих углам поворота рукояток. Баланс достигается в случае равенства активных и реактивных сопротивлений в обоих плечах, Затем, добившись баланса, нужно прочитать значения сопротивления R3 и емкости С5. а затем рассчитать реактивное сопротивление С5 исходя из данной частоты. Таким образом мож­но будет определить активную (R3) и реактив­ную (С5) составляющую сопротивления анализируемой антенны.

Обратите внимание на емкость СЗ, которая составляет 100 пФ, то есть, половину макси­мальной емкости С5. Если при измерениях окажется что емкость С5 в балансе установи­лась больше 100 пФ, то это говорит о емкост­ном характере реактивного сопротивления антенны, а вот величина С5, установленная меньше 100 пФ, наоборот, говорит о индук­тивном характере реактивного сопротивления в антенне.

Трансформатор Т1 намотан на ферритовом кольце 600НН диаметром 10 мм. Обмотки одинаковые, они выполнены втрое сложенным обмоточным проводом типа ПЭВ диаметром 0,35. Восемь витков, равномерно распреде­ленных по кольцу. Начала обмоток на схеме отмечены точками.

Схема требует налаживания и градуировки. Переменный резистор R3 и конденсатор С5 нужно, как уже сказано, обустроить шкалами со значениями сопротивления и емкости, соот­ветственно (потребуется омметр и измеритель емкости).

Далее, подключаем к Х2 эквивалент антенны. – сопротивление 50 ом, не индуктивное. На У1 подаем сигнал 15 МГц. Ставим ручку С5 в положение 100 пФ. Увеличиваем напряжением с генератора (резистором R1 или регулятором генератора) до максимального показания Р1. Затем, вращая ручку R3 ищем место с глубоким провалом в показаниях прибора. Далее, делаем показания прибора еще меньше, регулируя конденсатор С5. На шкале С5 делаем дополнительную метку, обозначенную «0». Это есть точка отсутствия реактивной составляющей в нагрузке. Промежуток от нулевой точки до максимального значения емкости С5 нужно выделить сектором и отметить как «Емкостная реактивность», а промежуток от этой же нулевой точки и до минимальной емкости С5 выделить другим сектором и отметить как «Индуктивная составляющая реактивности»

Похожие публикации