Активный темброблок схема. Радио для всех - стерео темброблок с му

Сложно себе представить современный усилитель звука низкой частоты без темброблока, да и не у каждого современного МП3 проигрывателя являющегося источником звука есть качественный эквалайзер полностью удовлетворяющий острый слух настоящих меломанов. Поэтому предлагаю вам собрать простой и довольно качественный темброблок всего на одной микросхеме LM1036N своими руками. Данная микросхема устанавливается в дорогой аудио аппаратуре и отлично работает в качестве предусилителя звука практически с любым усилителем низкой частоты.

На этом рисунке изображена схема двухканального темброблока имеющего регуляторы: громкость, баланс, тембр НЧ, тембр ВЧ и расширитель стереобазы.

В данной схеме микросхема LM1036N выполняет роль предварительного усилителя звука низкой частоты с регулировкой громкости, баланса, тембра низкой частоты и тембра высокой частоты. Полезной опцией микросхемы является встроенный расширитель стереобазы, который позволяет усилить стерео эффект за счет перекрестного сложения отфильтрованных сигналов левого и правого канала. Как это работает, рассказывать не буду, лучше один раз послушать ушами, чем сто раз прочитать о этом глазами. Стабилизатор напряжения L7812CV позволяет питать схему напряжением от 12 до 30 вольт. Собирать схему желательно на печатной плате, так будет красиво и надежно. Микросхему обязательно надо аккуратно пропаивать стараясь не перегревать ножки иначе может выйти из строя. Ни в коем случае не ставьте микросхему в DIP панельку, от этого качество звука заметно ухудшится и появятся ужасные фоновые звуки. При покупке микросхемы обратите внимание на качество маркировки, буквы должны быть четкие и хорошо читаемые, очень много подделок. Я покупал в Китае на Али Экспресс, прислали на 100% новые и оригинальные. Собранная схема работает сразу и в настройке не нуждается.

На этом рисунке изображена печатная плата темброблока на микросхеме LM1036N.


Для проверки схемы я подключил к темброблоку заранее собранный о котором я уже писал в одной из своих статей. Качество звука просто превосходное, словами не передать это надо только слышать. Надеюсь настоящим меломанам моя самоделка очень понравиться. Рекомендую!


Радиодетали для сборки

  • Микросхема LM1036N
  • Резисторы R1, R2, R3, R4 47К 0.25W
  • Переменные резисторы Р1, Р2, Р3, Р4 50К
  • Конденсаторы С1, С2 0.47, С3 47mF 25V, C4, C6, C9 0.022mF, C5, C8, C15, C16 10mF 50V, C7, C13, C14, C17, C18 0.22mF, C10 100mF 25V, C11 0.1mF, C12 1000mF 25V
  • Стабилизатор напряжения L7812CV
  • Радиатор KG-487-17 (HS 077-30)
  • Тумблер Китайский миниатюрный типа ON-ON

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

В этой статье вниманию читателей предлагается ряд различных по схемотехнике и функциональным возможностям регуляторов тембра, которые могут быть использованы радиолюбителями при разработке и модернизации звуковоспроизводящей аппаратуры.

Основной недостаток еще недавно популярных активных регуляторов тембра состоит в использовании глубокой частотно-зависимой ООС и больших дополнительных искажениях, вносимых ими в регулируемый сигнал. Вот почему в высококачественной аппаратуре желательно применять пассивные регуляторы. Правда, и они не лишены недостатков. Самый крупный из них - значительное затухание сигнала, соответствующее диапазону регулирования. Но так как глубина регулирования тембра в современной звуковоспроизводящей аппаратуре невелика (не более 8...10 дБ), то в большинстве случаев вводить в тракт сигнала дополнительные каскады усиления не требуется.

Другой, не столь существенный недостаток таких регуляторов - необходимость применения переменных резисторов с экспоненциальной зависимостью сопротивления от угла поворота движка (группа "В"), обеспечивающих плавное регулирование. Однако простота конструкции и высокие качественные показатели все же склоняют конструкторов к применению именно пассивных регуляторов тембра.

Следует отметить, что эти регуляторы требуют низкого выходного сопротивления предшествующего им каскада и высокого входного сопротивления последующего.

Разработанный английским инженером Баксандалом еще в 1952 г. регулятор тембра стал, пожалуй, самым распространенным частотным корректором в электроакустике. Классический его вариант состоит из образующих мост двух звеньев фильтра первого порядка - низкочастотного R1C1R3C2R2 и высокочастотного C3R5C4R6R7 (рис. 1,а). Аппроксимированные логарифмические ампли-тудно-частотные характеристики (ЛАЧХ) такого регулятора показаны на рис. 1 ,б. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба ЛАЧХ.

Теоретически максимально достижимая крутизна АЧХ для звеньев первого порядка составляет 6 дБ на октаву, но при практически реализуемых характеристиках из-за незначительного различия частот перегиба (не более декады) и влияния предшествующих и последующих каскадов она не превышает 4...5 дБ на октаву. При регулировании тембра фильтр Баксандала меняет только наклон АЧХ без изменения частот перегиба. Вносимое регулятором на средних частотах затухание определяется соотношением n=R1/R3. Диапазон регулирования АЧХ при этом зависит не только от величины затухания п, но и от выбора частот перегиба частотной характеристики, поэтому для его увеличения частоты перегиба устанавливают в области средних частот, что, в свою очередь, чревато взаимным влиянием регулировок.

В традиционном варианте рассматриваемого регулятора R1/R3=C2/C1= =C4/C3=R5/R6=n, R2=R7=n-R1. При этом достигается приблизительное совпадение частот перегиба АЧХ в области ее подъема и спада (в общем случае они различны), что обеспечивает относительно симметричное регулирование АЧХ (спад даже в этом случае неизбежно получается более крутым и протяженным). При обычно используемом п=10 (для этого случая указаны минимальные значения номиналов элементов на рис. 1,а-3,а) и выборе частот раздела вблизи 1 кГц регулирование тембра на частотах 100 Гц и 10 кГц относительно частоты 1 кГц составляет ±14...18дБ. Как отмечалось выше, для достижения плавного регулирования переменные резисторы R2, R7 должны иметь экспоненциальную характеристику регулирования (группа "В") и, кроме того, для получения линейной АЧХ в среднем положении движков регуляторов соотношение сопротивлений верхнего и нижнего (по схеме) участков переменных резисторов также должно быть равно п. При "хайэндовском" п=2...3, что соответствует диапазону регулирования ±4...8 дБ, вполне допустимо использовать переменные резисторы с линейной зависимостью сопротивления от угла поворота движка (группа "А"), но при этом несколько огрубляется регулировка в области спада АЧХ и растягивается в области подъема, а плоская АЧХ получается отнюдь не в среднем положении движков регуляторов. С другой стороны, сопротивление секций сдвоенных переменных резисторов с линейной зависимостью лучше согласовано, что уменьшает рассогласование АЧХ каналов стереофонического усилителя, так что неравномерное регулирование в этом случае можно считать допустимым.

Наличие резистора R4 не принципиально, его назначение - снизить взаимное влияние звеньев и сблизить частоты перегиба АЧХ в области высших звуковых частот. Как правило, R4= =(0,3...1,2)"R1. Как показано ниже, от него в ряде случаев можно вообще отказаться. Для снижения влияния на регулятор предшествующих и последующих каскадов их выходное Rвых и входное Rвх сопротивления должны быть соответственно Rвых<>R2.

Приведенный "базовый"вариант регулятора применяется обычно в радиоаппаратуре высокого класса. В бытовой аппаратуре используют несколько упрощенный вариант (рис. 2,а). Аппроксимированные логарифмические амплитудно-частотные характеристики (ЛАЧХ) такого регулятора приведены на рис. 2,6. Упрощение его высокочастотного звена привело к некоторой расплывчатости регулирования в области высших частот и к более заметному влиянию предшествующего и последующего каскадов на АЧХ в этой области.


Pиc.2

Подобный корректор при п=2 (с переменными резисторами группы "А") был особенно популярен в простых любительских усилителях конца 60-х - начала 70-х годов (главным образом, из-за малого затухания), но вскоре величина п возросла до привычных сегодня значении. Все сказанное выше относительно диапазона регулирования, согласования и выбора регуляторов справедливо и для упрощенного варианта корректора.

Если отказаться от требования симметричного регулирования АЧХ на участках их подъема и спада (кстати, необходимость спада практически не возникает), то можно еще более упростить схему (рис. 3,а). Приведенные на рис. З.б ЛАЧХ регулятора соответствуют крайним положениям движков резисторов R2, R4. Достоинство такого регулятора - простота, но поскольку все его характеристики взаимосвязаны, для удобства регулирования целесообразно выбирать п=3...10. С ростом п крутизна подъема растет, а спада - снижается. Все сказанное выше о традиционных вариантах корректора Баксандала в полной мере относится и к этому, предельно упрощенному варианту.


Pиc.3

Однако схема регулятора тембра Баксандала и ее варианты - отнюдь не единственная возможная реализация пассивного двухполосного регулятора тембра. Вторая группа регуляторов выполнена не на базе мостов, а на базе частотно-зависимого делителя напряжения. В качестве примера изящного схемотехнического решения регулятора можно привести темброблок, в свое время использовавшийся в различных вариациях в ламповых усилителях электрогитар. "Изюминкой" данного регулятора является изменение частот перегиба АЧХ в процессе регулирования тембра, что приводит к интересным эффектам в звучании "классической" электрогитары. Базовая его схема изображена на рис. 4,а, а аппроксимированные ЛАЧХ - на рис. 4,6. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба.


Pиc.4

Нетрудно заметить, что регулировка в области низших звуковых частот изменяет частоты перегиба, не меняя наклон АЧХ. Когда движок переменного резистора R4 находится в нижнем (по схеме) положении, АЧХ на низших частотах линейна. При перемещении же движка вверх на ней появляется подъем, причем точка перегиба в процессе регулирования сдвигается в область более низких частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R4 начинает шунтировать резистор R2, что вызывает сдвиг высокочастотной точки перегиба в область более высоких частот. Таким образом, при регулировании подъем низких частот дополняется спадом средних. Регулятор высших звуковых частот представляет собой простейший фильтр первого порядка и особенностей не имеет.

На базе этой схемы можно построить несколько вариантов темброблоков, позволяющих регулировать АЧХ в области низших и высших частот. Причем в области низших частот возможен и подъем, и спад АЧХ, а на высших - только подъем.

Вариант темброблока с регулированием частоты перегиба АЧХ в низкочастотной области показан на рис. 5,а, его ЛАЧХ - на рис. 5,6. Резистор R2 регулирует частоту перегиба АЧХ, a R5 - ее наклон. Совместное действие регуляторов позволяет получить значительные пределы и большую гибкость регулирования.


Pиc.5

Схема упрощенного варианта темброблока приведена на рис. 6,а, его ЛАЧХ - на рис. 6,6. Он представляет собой, в сущности, гибрид низкочастотного звена темброблока, показанного на рис. 3,а, и высокочастотного звена темброблока, показанного на рис.4,а.


Pиc.6

Объединив функции регулирования АЧХ в низкочастотной и высокочастотной областях, можно получить простой комбинированный регулятор тембра с одним органом управления, весьма удобный для применения в радиоприемной и автомобильной аппаратуре. Его принципиальная схема показана на рис. 7,а и ЛАЧХ - на рис. 7,6. В нижнем (по схеме) положении движка переменного резистора R1 АЧХ близка к линейной во всем диапазоне частот. При перемещении.его вверх появляется подъем на низших частотах, причем низкочастотная точка перегиба в процессе регулирования сдвигается в область более низших частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R1 включает в работу конденсатор С1, что приводит к подъему высших частот.


Pиc.7

При замене переменного резистора R1 переключателем (рис. 8,а и 8,6) рассмотренный регулятор превращается в простейший тон-регистр (положение 1 - classic; 2 - jazz; 3 - rock), популярный в 50-х - 60-х годах и вновь используемый в эквалайзерах магнитол и музыкальных центров в 90-х.


Pиc.8

Несмотря на то что о регулировании тембра, казалось бы, все давно уже сказано, многообразие пассивных корректирующих цепей не исчерпывается предложенными вариантами. Немало забытых схемотехнических решений переживают сейчас второе рождение на новом качественном уровне. Весьма перспективен, например, регулятор громкости с раздельной регулировкой тонкомпенсации по низким и высоким частотам [З].

ЛИТЕРАТУРА
1. Шкритек П. Справочное руководство по звуковой схемотехнике (пер. с нем.). - М.: Мир, 1991, с. 151-153.
2. Крылов Г. Широкополосный УНЧ. - Радио, 1973, N 9, c.56,57.
3. Шихатов А. Комбинированный блок регулирования АЧХ. - Радио, 1993, N 7, с. 16.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Вариант 1
C1 Конденсатор 0.022 мкФ 1 В блокнот
C2 Конденсатор 0.22 мкФ 1 В блокнот
C3 Конденсатор 0.015 мкФ 1 В блокнот
C4 Конденсатор 0.15 мкФ 1 В блокнот
R1, R5 Резистор

4.7 кОм

2 В блокнот
R2, R7 Переменный резистор 47 кОм 2 В блокнот
R3, R6 Резистор

470 Ом

2 В блокнот
R4 Резистор

3.3 кОм

1 В блокнот
Вариант 2
C1, C4 Конденсатор 0.022 мкФ 2 В блокнот
C2 Конденсатор 0.22 мкФ 1 В блокнот
C3 Конденсатор 2200 пФ 1 В блокнот
R1 Резистор

4.7 кОм

1 В блокнот
R2, R5 Переменный резистор 47 кОм 2 В блокнот
R3 Резистор

470 Ом

1 В блокнот
R4 Резистор

3.3 кОм

1 В блокнот
Вариант 3
C1 Конденсатор 0.22 мкФ 1 В блокнот
C2 Конденсатор 2200 пФ 1 В блокнот
R1 Резистор

4.7 кОм

1 В блокнот
R2, R4 Переменный резистор 47 кОм 2 В блокнот
R3 Резистор

470 Ом

1 В блокнот
Вариант 4
C1 Конденсатор 0.01 мкФ 1 В блокнот
C2 Конденсатор 270 пФ 1 В блокнот
R1 Резистор

100 кОм

1 В блокнот
R2 Резистор

10 кОм

1 В блокнот
R3, R4 Переменный резистор 220 кОм 2 В блокнот
Вариант 5
C1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Конденсатор 270 пФ 1 В блокнот
R1 Резистор

100 кОм

1 В блокнот
R2, R4, R5 Переменный резистор 220 кОм 3 В блокнот
R3 Резистор

10 кОм

1 В блокнот
Вариант 6
C1 Конденсатор 0.1 мкФ 1

Этот стереофонический предварительный усилитель построен на основе популярного операционного усилителя NE5532 и нескольких дискретных элементов. Предварительный усилитель подходит для работы с любым источником сигнала, таким как mp3 плеер или компьютер, а в дополнении с оконечным усилителем мощности позволит получить дома неплохой звук.

В предусилителе предусмотрен темброблок, позволяющий производить регулировку низких и высоких частот, а также регулировку громкости с помощью трех спаренных поворотных потенциометров. Размещение потенциометров на краю платы позволяет отказаться от проводов, соединяющих потенциометры с платой, что в свою очередь приводит к улучшению параметров усилителя в плане шумов.

Предусилитель питается от двухполярного источника питания с напряжением от +/-18 до +/-30 вольт.

Работа предварительный усилитель с темброблоком

Принципиальная схема предусилителя показана на рисунке ниже:

Усилитель состоит из двух одинаковых каналов. Работу предварительного усилителя изучим на одном из них. Входной сигнал подается на разъем GP1 и поступает прямо на фильтр высоких частот, состоящий из конденсатора C1 (1 мкФ) и резистора R1 (100k) с частотой среза около 1,5 Гц, это позволяет эффективно срезать постоянную составляющую и самые низкие частоты.

Далее сигнал поступает на неинвертирующий усилитель U1 (NE5532) и резисторы R3 (10k) и R7 (4,7 k), что обеспечивает усиление сигнала в 1,5 раза. Небольшой конденсатор C3 (10 пФ) предотвращает возбуждение, в то время как C5 (1 мкФ) разделяет контуры на усилителях U1 и U2(NE5532).

Регулятор частот построен на усилителе U2, а сама регулировка частот построена классическим способом. Элементы, вносящие изменения в характеристики находятся в петле отрицательной обратной связи усилителя U2. Когда оба регуляторы находятся в центральном положении, сопротивление X1 (полученное из элементов: R9 (10k), C9 (33 нФ), C7 (4,7 нФ), а также: P1 (100k), P2 (100k), R11 (10k) и R12 (3,3 к) — «в среднем положении») между входным сигналом и инвертирующим входом усилителя U2 равно сопротивлению X2 (полученное из элементов: R15 (10к), C11 (33 нФ), C13 (4,7 нФ) и в середине также: P1, P2, R11 и R12 — » в среднем положении») между выходом усилителя U2 и инвертирующим вход. Коэффициент усиления А, выражается следующей зависимостью:

Он равен 1 для всего диапазона рабочих частот усилителя.

P1 отвечает за регулировку низких частот. Для высоких частот конденсаторы C9 и C11, являются короткозамкнутыми, так что регулировка с помощью потенциометра не оказывает никакого влияния на этих частотах. Потенциометр отвечает за регулировку высоких частот, а из-за исключения конденсаторов С7 и C13 регулировка не оказывает никакого влияния на низкие частоты.

Сигнал с выхода регулятора частоты поступает через резистор R17 (4,7 k) на потенциометр регулировки громкости P3 (100k) и далее к следующему контуру усиления, а именно U5 (NE5532). Элементы R19(15k) и R21 (33k) настраивают U5 для работы в качестве инвертирующего усилителя с коэффициентом усиления около 2. С выхода U5 сигнал через фильтр R23 (100Р), C21 (1 мкФ) и R25 (100k) попадает на выход предусилителя GP3.

Напряжение питания для операционных усилителей получают с помощью стабилизаторов U3 (78L15) и U4 (79L15), и фильтруется с помощью конденсаторов C15–C16 и C17–C18. Кроме того, питание каждого из четырех операционных усилителей сглаживается с помощью конденсаторов C19–C20 и C23- C26 (100 нФ).

(unknown, скачано: 4 567)

Портативный USB осциллограф, 2 канала, 40 МГц....

Темброблок или эквалайзер – узел, который отвечает за срез той или иной частоты в усилителе мощности низкой частоты. С его помощью легко можно срезать низкие, высокие или средние частоты, таким образом настраивая звучание усилителя под свой вкус. Устройство нашло широкое применение и внедряется почти во все профф. усилители, также может комплектоваться отдельно.

Сегодня рассмотрим одну из таких конструкций, которая может работать совместно с любым усилителем низкой частоты, также и автомобильным.

Темброблок активный, следовательно в нем есть отдельный усиливающий элемент, который в принципе может быть любым. Усилитель в таких схемах нужен для конечного усиления сигнала после обработки, поскольку величина начального сигнала сильно уменьшается (слабеет). Усилитель может быть построен как на специализированной микросхеме УНЧ, так и на ОУ, но в нашей схеме в качестве усилителя простая схема на одном транзисторе.

Этот усилитель может питаться от 12 Вольт, это и делает схему универсальной и дает возможность использовать в автомобиле. Транзистор стоит подобрать с наибольшим коэффициентом усиления (HFE). Можно использовать маломощные транзисторы как составные, так и обычные. В моем варианте задействован транзистор BC546, он не принципиален, может быть заменен на любой другой NPN транзистор с соответствующими параметрами. В моем варианте присутствуют регуляторы для НЧ/ВЧ и громкости.

Конденсаторы в звуковых цепях советуется взять пленочные, но схема отлично будет работать как с обычной, так и с многослойной керамикой. Печатную плату решил не делать, ограничился макетной монтажной платой.

Переменные резисторы самые обычные, их сопротивление может быть от 10 до 68кОм, в моем варианте все резисторы на 10 кОм. Конструкцию в конечном итоге расположил в корпус от универсального импульсного адаптера, по размерам подошел неплохо.

В качестве источника питания задействован маломощный сетевой трансформатор от китайского радиоприемника, на выходе выдает напряжение в районе 12 Вольт, после выпрямителя напряжение уже около 16 Вольт.

В корпусе просверлил отверстия под вход/выход, регуляторы и тумблер питания, получилось не очень хорошо, но работать будет.

Схема справилась со своей задачей очень даже неплохо, даже не чувствуется, что работает примитивный блок с нулевыми затратами. На счет затрат – они действительно нулевые, все, что тут задействовано можно найти в старом хламе.

Схема лампового тембр блока для усилителя основана на LM1036N, контролирующей громкость и баланс в автомагнитолах. Дополнительный управляющий вход позволяет довольно просто применять компенсацию громкости.


Все что вам потребуется для сборки своими руками темброблока на транзисторах — это LM1036N, 15 конденсаторов, несколько фиксированных резисторов и несколько потенциометров. В результате вы получите качественное устройство для управления громкостью и другими параметрами звука.

Шаг 1: Базовая информация

Схема, которую я использовал, приведена в техническом паспорте изготовителя: ссылка

Посмотрите на страницу 6.

Схема работает просто отлично, поэтому, если это ваш первый опыт – используйте эту, она будет прекрасно работать, если только вы не испортите детали.

Вам понадобится:

  • LM1036N
  • 47 мкФ x 1
  • 0.47 мкФ x 2
  • 0.01 мкФ x 2
  • 0.22 мкФ x 4
  • 0.39 мкФ x 2
  • 10 мкФ x 2
  • 10 мкФ x 1
  • 47k резисторы x 4
  • 47k потенциометры x 4
  • Выключатель x 1
  • 3.5 аудио джек разъемы (мама и папа) (размер может быть любой)
  • Кабеля (используйте защищенные для входящих и выходящих сигналов)
  • Пустая плата, к которой вы будете все припаивать
  • Паяльник и режущие инструменты
  • Пластиковый корпус
  • Кнопки для потенциометров

На все про все я потратил около 1000 рублей.

Шаг 2: Экспериментируем


Я начал со сборки схемы на макетной плате. Это очень удобно, если вы новичок и не уверены, что все сразу получится, но имейте ввиду, не стоит особо доверять симуляциям. Когда я делал тесты, было довольно много шумов в аудио сигнале.

Вы можете пропустить этот шаг и сразу приступить к пайке, если уверены, что у вас все получится.

Хочу заметить, что для проверки входящего сигнала я использовал свои пальцы. Когда вы касаетесь ими штекера, должен издаться нехороший звук, похожий на шум. Выкрутите потенциометр, который отвечает за громкость на максимум, если вы не слышите никакого звука, то не стоит подключать свой телефон, так как может быть короткое замыкание в схеме или просто что-то не так подсоединено.

Заметка: Все электролитические конденсаторы должны быть подключены правильно. У них есть маркировка на одной из сторон (чаще всего на отрицательной), потратьте немного времени, чтобы разобраться с этим.

После того, как я услышал шум в каждом из каналов, я подключил свой телефон и включил музыку, проверил все кнопки и послушал разницу в звучании.

Еще один момент — выходной сигнал. Я использовал обычные наушники. Если вы будете использовать дешевые, то можете не заметить особой разницы в настройках.

Шаг 3: Делаем схему




На первой фотографии, я припаял большинство компонентов. Постарайтесь установить конденсаторы как можно ближе к микросхеме, так как это сократит длину дорожек и минимизирует шум. Это также поможет при выборе корпуса, он будет меньше и плата в него лучше влезет.

На втором фото вы можете видеть законченную схему с выходными кабелями, припаянными снизу. Желтый и красный – каналы, черный – заземление.

На третьем фото вы можете увидеть маленькие входные кабеля. Они идут от старых наушников, в которых уже есть 3.5 мм разъем, а значит его не надо паять.

Шаг 4: Делаем корпус



Скорее всего, вы захотите установить потенциометры на одной стороне коробки. Я использовал пластиковый корпус по размеру моей платы. Просверлил четыре отверстия спереди, чтобы просунуть через них оси потенциометра, которые затягиваются на небольшой пластиковой детали внутри корпуса.

Похожие публикации